Visible application reduces waste


During wildland/urban-interface fire incidents, the application of compressed-air foam on trees, brush, and building exposures is highly visible. This prevents over-application of agent and water wastage. The foam blanket acts as a short-term thermal barrier. Once the foam blanket evaporates, the need for reapplication is evident to fire crews.

Saving Lives and Property

Compressed-air foam is another useful tool in the toolbox to increase firefighter safety and reduce property damage. Consider the following issues.

Firefighter fatality rates, when compared to the number of fires, have remained virtually unchanged over time, even with the advent of better PPE, SCBA and PASS, as well as new consensus standards such as NFPA 1500, Fire Department Occupational Health and Safety.

Today, fewer firefighters are protecting a much larger population and more residential properties compared with 20 years ago. Despite the economic downturn, properties today still are worth more than they were two decades ago, and new homes have higher average square footage than older models. Moreover, the contents of these new larger homes pose more challenges. According to NFPA 921, Guide to Fire and Explosive Investigations, an old cotton-padded upholstered chair will produce a heat-release rate of 290 to 370 kilowatts (kW), while a newer polyurethane chair will produce a heat-release rate of 1,350 to 1,990 kW. Current construction techniques (e.g., wood-truss roof assemblies) make new homes more hazardous due to their poor resistance to fire and vulnerability to early structural collapse.

According to NFPA, there has been a decrease in the incidence of structure fire over the past four decades throughout the U.S. As a result, firefighters today have less experience than their predecessors had a generation ago. As experienced firefighters and officers retire, they are replaced by young officers with less experience. These young officers may be unable to recognize and react quickly to flashover and building collapse, which could result in injuries and fatalities.

While building codes and construction standards have risen to higher levels in some parts of the country, the adoption and installation of residential fire sprinklers for new homes, and the retrofit of existing dwellings, has been a slow mover. Residential sprinklers have been proved to increase occupant fire survivability and reduce the possibility of flashover and extension of a single room fire beyond the compartment of origin. In many cases, the sprinkler system extinguishes the fire before the fire department arrives. Too little attention has been placed on the benefits that residential sprinkler technology has to offer. While not a “cure-all” for fire protection, residential sprinklers, if widely implemented, could reduce property damage and firefighter injury and fatality.

CAFS used with Class A foam will deliver large quantities of agent with existing manpower to attack structural fires that previously required massive tactical operations. The technology associated with CAFS and Class A foam is new and different to most of the structural fire service, and history tells us that the fire service will be slow to adopt it.

The first step in evaluating whether CAFS and Class A foam are the right tools for your department is to obtain training and education. Classroom instruction, followed by hands-on demonstrations, is the key to learning the advantages and limitations of what this technology can do. The importance of obtaining qualified instruction cannot be overemphasized.